osV

Nadav Har’El
Cloudius Systems
nyh@cloudius-systems.com

October 2013, Haifa Linux Club



e A new operating system for virtual
machines in the cloud.

e BSD-licensed free software.

e Can run Linux software, but not based on
Linux.

Why was it written?
How was it written?
What makes it different?
What makes it interesting?



Glauber Cbsta
KVM, Containers, Xen

osV

NELEVARETd =N
Nested KVM

Avi Kivity KVM

Pekka Enberg, originator

kvm, jvm, slab

Dor Laor, Former kvm
project mngr

Or Cohen Dmitry Fleytman Ronen Narkis Guy Zana  Christoph Hellwig Tomasz Grabiec

FOES 2oy
e Z




In the beginning there was hardware
.. and then they added
an application
.. and then they added
an operating system
.. and then they added
managed runtime
.. and then they added
a hypervisor
Note how layers added, never removed.



Your App

Application Server

JVM

Operating System

Hypervisor

Hardware




Your App

Application Server

JVM provides protection and abstraction

provides protection and abstraction

Hypervisor provides protection and abstraction

Operating System

Hardware




Our software stack
Congealed into existence.



| roveomponnt | o oo TiumiNe
o
BT v O

Backward compatibilit y

v
v
v
v

IIO stack

Conflguratlon V



e Containers solve a similar problem by
giving up the hypervisor layer.
e But the hypervisor is good!
o Common
o Doesn’'t impose specific OS
o Security, isolation, etc.

e Instead, OSv reduces duplicate roles of the
ON}



Virtualization 1.0 | Virtualization 2.0 | Virtualization 2.0, Massive Scale

N w
V) g 7>eyWOrdsvlz73 ~‘, “

. ) T SR tweets o
s ," > / Saut — r
ﬁ & E i e | Join Us|
‘ Scalability
— O m::/) a :HOG e ode bypass ) ,,“
N 0.-.- [&]UKU nt=“H?mefge;; l v ST o oponecr o1 008 O ‘
v T 7 e |
John W, Smith
Transformed the Compute node o —
enterprise from BTV oo et ik o ot .

physical2virtual
virtual server




solution vendors

services

team
. Keene o USEr
cartridges contributor information 0 p e nprOJeCt
applications COde e.g experience

teamstime

o Componeg}mseworks
architecturecontainer Iatform

o extend t. ecosystem ™ list new |

development
I I n contributing

best-of-breed

contributors participation web
ApaChe multl-tenant presentation value

labl COMMUNty emionme
avaa:;i"t?’ C I 0 U d documenta):io::n 0;;2:::]"§3$0 u r c e

Carbon complete model infrastrUCtureWS 0 2
many

programming ‘e
shared without




Deployments at Amazon.com

11.6 1,079 10,000 30,000

Seconds mean time Max number of Mean number of hosts Max number of hosts
between deployments deployments in a simultaneously receiving simultaneously
(\WEELGEW) single hour a deployment receiving a deployment

Rolling upgrade
within seconds and
a fall back option

Avallability Zone 3

H '
N .
N .
' .
. .
. .
. .
' .
. .
\ .

’



NO Tuning
NO State

NO Patching
4 VMs per sys
admin ratio

http://www.computerworld.com.au/article/352635/there best practice server system administrator ratio /



http://www.computerworld.com.au/article/352635/there_best_practice_server_system_administrator_ratio_/
http://www.computerworld.com.au/article/352635/there_best_practice_server_system_administrator_ratio_/

Linux progress

Needs from VM OS

Supports more
hardware.
Bigger, more
services.

More libraries,
layers,
configuration.

e Small amount of
virtual hardware.

e Fewer and fewer
services (cloud and
runtime provide
them).

e No users.

e No configuration.



less IS more.



Be the best OS
powering virtual machines
In the cloud

«@'hadaag




Single
Process
Server
Kernel

Hardware

Linked to
existing
JVMs

App sees
no change



TCP offload,

> 15Gbps
TCP/IP works; netperf
Performance: 7/2013
50Mbps..,
el RW ZES OSS launch,
N 64 vcpu kvm UDP, 03/2013 : Memcached
Git init osv, support, : S outperform by 40%,
12/2012 02/2013 9/2013
Virtio blk over ZFS mount, Cassandra
Java hello ram FS, 6/2013 works;
world, 2/2013 Cassandra
01/2013 >1Gbps outperforms
hetperf, Linux, 8/2013

6/2013



A new kernel written from scratch in C++,

ZFS filesystem from OpenSolaris (later OpenZFS).
TCPI/IP stack from FreeBSD (temporary).

Various libc compatibility functions from Musl.
Some VFS code from Prex (temporary).



Runs:
o Java, C, JRuby, Scala, Groovy, Clojure, JavaScript

Outperforms Linux:
o SpecdVM, MemCacheD, Cassandra, TCP/IP

400% better w/ scheduler micro-benchmark

< 1sec boot time



These days, credibility == open source
Looking for cooperation:

o Kernel-level developers
o Management stack
o Dev/ops workflow

BSD license
Already have contributions
from multiple companies

h

TO GO OPEN SOUR

CE

NEAREST SOFTWARE RESPOSITORY




e 64-bit x86

o KVM - running like a bat out of hell
o Xen HVM - running (still work in progress)
o VMware - planned in 2 months

e 64-bit ARM - planned




Allows us to make different assumptions

o Single address space
o Spin-locks are evil
o No system calls

Easy to experiment with new ideas without
decades of legacy.
Easier to add new think-outside-the-box

APIs.

Smaller code
o Less is more
o Easier to develop



Fun!
Feel like a pioneer!

e You are invited to join the fun, and be a
pioneer.

e Work on OSv. It's free software!

e [f you want to also make money,
Cloudius Systems is hiring!



e Single address space.
o No processes, just threads.
o No separate kernel address space.
o No protection between user-space and kernel.

e No “system calls”, just function calls.
o Runs Linux shared-objects by implementing the
Linux/Glibc ABI.
o No copy of the system call arguments.
o New non-Posix APls can be really zero-copy.



e Cheap threads and context switches.
o No interrupt context - just wake up handler thread.

e No spinlocks.

o Spinlocks are notorious for VM OSs: cause lock
holders preemption problem.

o Needed in interrupt context - which we don'’t have.

o We have lock-free mutexes.



e Linux emulation.
o Enough for running common runtimes (JVM) and

Important applications.
o But not more than necessary. OSv is not Linux.

e New OSv APIs for applications/JVM

o New APIs for really zero-copy I/0O.

o New APIs giving the single application more access,
e.g., JVM can use page table dirty bits instead of
emulating this feature slowly.



e Forget all they told you about C++!
e We didn’t choose C++ for creating complex type
hierarchies.
e (C++11 finalized in August 2011.
e C++11 is about:
o Avoiding boilerplate repetition
o Easy and safe reuse of data structures
o Rich standard library (STL, Boost)
o No runtime overhead
o Support for concurrent memory access (atomic
variables, memory ordering)



int before(struct something * %nt after(something* p)
{ :
: : if (!p)
nt r; return -ENOENT;
— -ENOENT; WITHTLOCK(p->lock) {
if (!p) if (lp->y)
goto outZ; WITHTSEE? -EI/NﬁL;I)
TUteXE}ESEE§D'>IOCK); Feturnp++é->y?§;;
if (!p->y)
goto outl;
mutex_ lock(&p->y->lock);
r = ++p->y->nN;
mutex_unlock(&p->y->lock);
outl:
mutex_unlock (&p->lock) ;
out?:
return r;
}




TRACEPOINT (trace_mutex_lock, "%p", mutex *);
TRACEPOINT (trace _mutex lock wait, "%p", mutex *);

void mutex::Llock()
{

trace_mutex_ lock(this);

[/]1$ perf stat mutex lock mutex lock wait sched switch
mutex lock mutex lock wait sched switch
11 0 2

=)

885

181
152
154
190
157
152

O O O (¢

> )

C







Classic mutex lock() implementation:
e On UP:

o Mutex contains internal state: “locked” flag, and “wait
queue”’.
o Disable preemption to protect it.

e On SMP:
o Use spin lock to protect the state.

e Spin lock only used for a short while -
during the few instructions setting the
internal state. NOT while sleeping.

S0 no problem, right?



Spin lock only used for a short while, so no
problem, right?

Wrong on a virtual machine!

On VMs, virtual CPUs can “pause” for long
durations:
o During an exit (host interrupt, 1/O, etc.)
o Host CPU overcommit (other guests, host
processes).



On VMSs, virtual CPUs can pause for long

durations. So:

e One thread lock()s a mutex and its vCPU is
preempted while holding the spin-lock.

e Other threads on other vCPU try to lock, get
stuck in infinite loop instead of going to
sleep!

A known problem for VM OSs -

Lock-Holder’s Preemption problem.



Lock-Holder’s Preemption problem

e Traditional kernels try to solve this with
hacks.

e OSv solves this by using no spin locks!

e Mutex implementation without spinlocks:

o “Lock-free”

o Uses modern SMP atomic operations:
atomic increment, Compare-Exchange,
etc.

o But much harder than first appears!



e Lock():
o Atomically check if locked, and if not set locked=true
(CAS).
o If was already locked, atomically add this thread to
wait queue (lock-free list algorithm).

e Unlock():

o Wake first thread on the wait queue, if any.
o If not, unset locked.

e EPIC FAIL! What it:

o lock() saw locked...
o unlock() saw empty wait queue, not woke anyone.
o ...lock() adds to queue, but nobody to wake it!



e Not easy to fix! (try it)

e Use an algorithm proposed in 2007 by
“Blocking without locking or Ifthreads: A lock-free thread
library” by Anders Gidenstam and Marina Papatriantafilou

o unlock() realizes there’'s a concurrent lock but empty
queue;

o It hands off the wakeup job to one of the concurrent
locks.

o A common technique in LF algorithms: “helping”.

Still easier said than done :-)

o And really cool.

O



Common kernel network stack

Interrupt level Task level

System Application

@@@@

packet sk byte stream




The common approach sucks on modern SMP:
e Cache bouncing as data moves through

layers

o Interrupt processed on different CPU than read()
o Linked lists

e Locking costs, even if not contended.
o Lock on socket, file descriptor, etc.

e Data copying

o Packets to socket buffer, kernel to user space, etc.



Do as much processing as
possible on the CPU where
the application is running.



Net Channel design:

Softint




LAM MPI: Intel MPI Benchmark (IMB) using 4 boxes (8 processes)
SendRecv bandwidth (bigger is better)

Intel Benchmark Nesolute Bandwidth Comparison (Deiver =

LAM MPI: Intel MPI Benchmark (IMB) using 4 boxes (8 processes)
SendRecv Latency (smaller is better)

Intel Benchmark Aboolule Latency Comparison (Driver = £1000, Lik = POLL, Nodes = 4, G

Ty

™ Base Sendrecy




e For specialized applications, bypass the 1/O
stack completely
e Application consumes data from virtio rings

Kernel

—
_




Dynamic Your App

Heap :

Memory Application
Server

TCP in the

JVM + App

Context FaSteI’ GC




Lend
memory

JVM Memory




Collect roots for young GC
Scan stack traces

Scan dirty pages in old space

Tenured

Dirty cards
NN W W N 000 ]

Tenured

Page Table Entry

31 11 _9 0

Physical Page Address HHHH

G - Global

is
hrough
Supervisor
- Read\Write
P - Present




CasSa‘.n.dra
sriak
l »”
T
A ol
CouchDB U
G 7
.’ >calaris Project Voldemon

zendaserver
_om i

nmunity Edition




1. Done’

* well, unless the application fork()s



Must be a single-process application.
May not fork() or exec().

Need to rebuild as a shared object (.so).
Other API limitations apply.

s wh =



192.168.122.89

OSv Home Deploy Manage Monitor

OSv application deployment

Deploy your Java applications into OSv by following these steps:

» Upload your application zip file (see example project).
« Activate the uploaded application by starting it.

Choose Files

About

Contact




http://osv.io

https://github.com/cloudius-systems/osv

m @CloudiusSystems

osv-dev(@googlegroups.com



http://osv.io
http://osv.io
https://github.com/cloudius-systems/osv
https://github.com/cloudius-systems/osv

OSY@Cloudius



Feature/Property

OSY

Good for:

Machete:
Cloud/Virtualization

Traditional OS

Typical workload

Single app * VMs

Swiss knife: anything
goes

kernel vs app

Cooperation

Multiple apps/users,
utilities, anything

API, compatibility

JVM, POSIX

distrust

# Config files

0

Any, but
versions/releases..

Tuning

Auto

1000

Upgrade/state

Stateless, just boots

Manual, requires
certifications

JVM support

Tailored GC/STW
solution

Complex, needs
snapshots, hope..

Lines of code

Few

Yet another app

License

BSD

Gazillion

GPL / proprietary




