
OSV

Nadav Har’El
Cloudius Systems

nyh@cloudius-systems.com

October 2013, Haifa Linux Club

● A new operating system for virtual
machines in the cloud.

● BSD-licensed free software.
● Can run Linux software, but not based on

Linux.
Why was it written?
How was it written?

What makes it different?
What makes it interesting?

OSv

OSV

Glauber Costa
KVM, Containers, Xen

Nadav Har’El,
Nested KVM

Pekka Enberg,
kvm, jvm, slab

Dor Laor, Former kvm
project mngr

Avi Kivity KVM
originator

 Or Cohen Dmitry Fleytman Ronen Narkis Guy Zana Christoph Hellwig Tomasz Grabiec

In the beginning there was hardware
… and then they added

an application
… and then they added

an operating system
… and then they added

 managed runtime
… and then they added

 a hypervisor
Note how layers added, never removed.

Why OSv?

Typical Cloud Stack

Hardware

Hypervisor

Operating System

JVM

Application Server

Your App

A Historical Anomaly

Hardware

Hypervisor

Operating System

JVM

Application Server

Your App

provides protection and abstraction

provides protection and abstraction

provides protection and abstraction

Our software stack
Congealed into existence.

Too Many Layers, Too Little Value

Property/Component

Hardware abstraction

Isolation

Resource virtualization

Backward compatibility

Security

Memory management

I/O stack

Configuration

VMM OS runtime

Duplic
atio

n

Too Many Layers, Too Little Value

● Containers solve a similar problem by
giving up the hypervisor layer.

● But the hypervisor is good!
○ Common
○ Doesn’t impose specific OS
○ Security, isolation, etc.

● Instead, OSv reduces duplicate roles of the
OS.

Transformed the
enterprise from
physical2virtual

Virtualization

Virtualization 1.0 Virtualization 2.0

Compute node

virtual server

Virtualization 2.0, Massive Scale

Scalability

Virtualization 2.0, Dev/Ops

Virtualization 2.0, agility!

Rolling upgrade
within seconds and
a fall back option

OS that doesn’t get in the way

4 VMs per sys
admin ratio

http://www.computerworld.com.au/article/352635/there_best_practice_server_system_administrator_ratio_/

NO Tuning
NO State
NO Patching

http://www.computerworld.com.au/article/352635/there_best_practice_server_system_administrator_ratio_/
http://www.computerworld.com.au/article/352635/there_best_practice_server_system_administrator_ratio_/

Virtualization 2.0

Needs from VM OS Linux progress

● Small amount of
virtual hardware.

● Fewer and fewer
services (cloud and
runtime provide
them).

● No users.
● No configuration.

● Yes Complexity

● Supports more
hardware.

● Bigger, more
services.

● More libraries,
layers,
configuration.

Be the best OS
powering virtual machines

in the cloud

Mission statement

Hardware

Hypervisor

OSv

Your App

Hardware

Hypervisor

OSv + Jazz JVM

Your App

Hardware

Hypervisor

OSv + Jazz JVM

Hardware

Hypervisor

OSv

Hardware

Hypervisor

OSv + Jazz JVM

Your App

The new Cloud Stack - OSv

Hardware

Hypervisor

OSv

JVM

Application
Server

Your AppSingle
Process

Kernel
space only

Linked to
existing
JVMs

App sees
no change

Milestones

Formation,
12/2012

Seed, 02/2013

KVM,
networking,
04/2013

Outperform
Other OSs,
07/2013

OSS launch,
09/2013

limited GA,
Beginning
2014

First OEM
revenue,
Q1/2015

OSS launch,
Memcached
outperform by 40%,
9/2013

OSv’s code

● A new kernel written from scratch in C++.
● ZFS filesystem from OpenSolaris (later OpenZFS).
● TCP/IP stack from FreeBSD (temporary).
● Various libc compatibility functions from Musl.
● Some VFS code from Prex (temporary).

● Runs:
○ Java, C, JRuby, Scala, Groovy, Clojure, JavaScript

● Outperforms Linux:
○ SpecJVM, MemCacheD, Cassandra, TCP/IP

● 400% better w/ scheduler micro-benchmark
● < 1sec boot time

Status

● These days, credibility == open source
● Looking for cooperation:

○ Kernel-level developers
○ Management stack
○ Dev/ops workflow

● BSD license
● Already have contributions

from multiple companies

Open Source

● 64-bit x86
○ KVM - running like a bat out of hell
○ Xen HVM - running (still work in progress)
○ VMware - planned in 2 months

● 64-bit ARM - planned
● Others - patches welcome

Architecture ports

Why a new kernel?

● Allows us to make different assumptions
○ Single address space
○ Spin-locks are evil
○ No system calls

● Easy to experiment with new ideas without
decades of legacy.

● Easier to add new think-outside-the-box
APIs.

● Smaller code
○ Less is more
○ Easier to develop

Why a new kernel?

Fun!
Feel like a pioneer!
● You are invited to join the fun, and be a

pioneer.
● Work on OSv. It’s free software!
● If you want to also make money,

Cloudius Systems is hiring!

OSv’s kernel design principles

● Single address space.
○ No processes, just threads.
○ No separate kernel address space.
○ No protection between user-space and kernel.

● No “system calls”, just function calls.
○ Runs Linux shared-objects by implementing the

Linux/Glibc ABI.
○ No copy of the system call arguments.
○ New non-Posix APIs can be really zero-copy.

OSv’s kernel design principles

● Cheap threads and context switches.
○ No interrupt context - just wake up handler thread.

● No spinlocks.
○ Spinlocks are notorious for VM OSs: cause lock

holders preemption problem.
○ Needed in interrupt context - which we don’t have.
○ We have lock-free mutexes.

OSv’s kernel design principles

● Linux emulation.
○ Enough for running common runtimes (JVM) and

important applications.
○ But not more than necessary. OSv is not Linux.

● New OSv APIs for applications/JVM
○ New APIs for really zero-copy I/O.
○ New APIs giving the single application more access,

e.g., JVM can use page table dirty bits instead of
emulating this feature slowly.

Why C++11

● Forget all they told you about C++!
● We didn’t choose C++ for creating complex type

hierarchies.
● C++11 finalized in August 2011.
● C++11 is about:

○ Avoiding boilerplate repetition
○ Easy and safe reuse of data structures
○ Rich standard library (STL, Boost)
○ No runtime overhead
○ Support for concurrent memory access (atomic

variables, memory ordering)

Less boilerplate code

Tracepoints

New ideas for a new kernel

Lock-free Mutex

Classic mutex lock() implementation:
● On UP:

○ Mutex contains internal state: “locked” flag, and “wait
queue”.

○ Disable preemption to protect it.
● On SMP:

○ Use spin lock to protect the state.
● Spin lock only used for a short while -

during the few instructions setting the
internal state. NOT while sleeping.

So no problem, right?

Lock-free Mutex

Spin lock only used for a short while, so no
problem, right?

Wrong on a virtual machine!

On VMs, virtual CPUs can “pause” for long
durations:

○ During an exit (host interrupt, I/O, etc.)
○ Host CPU overcommit (other guests, host

processes).

Lock-free Mutex

On VMs, virtual CPUs can pause for long
durations. So:
● One thread lock()s a mutex and its vCPU is

preempted while holding the spin-lock.
● Other threads on other vCPU try to lock, get

stuck in infinite loop instead of going to
sleep!

A known problem for VM OSs -
Lock-Holder’s Preemption problem.

Lock-free Mutex

Lock-Holder’s Preemption problem
● Traditional kernels try to solve this with

hacks.
● OSv solves this by using no spin locks!
● Mutex implementation without spinlocks:

○ “Lock-free”
○ Uses modern SMP atomic operations:

atomic increment, Compare-Exchange,
etc.

○ But much harder than first appears!

● Lock():
○ Atomically check if locked, and if not set locked=true

(CAS).
○ If was already locked, atomically add this thread to

wait queue (lock-free list algorithm).
● Unlock():

○ Wake first thread on the wait queue, if any.
○ If not, unset locked.

● EPIC FAIL! What it:
○ lock() saw locked...
○ unlock() saw empty wait queue, not woke anyone.
○ ...lock() adds to queue, but nobody to wake it!

Lock-free Mutex

Lock-free Mutex

● Not easy to fix! (try it)
● Use an algorithm proposed in 2007 by

“Blocking without locking or lfthreads: A lock-free thread
library” by Anders Gidenstam and Marina Papatriantafilou
○ unlock() realizes there’s a concurrent lock but empty

queue;
○ It hands off the wakeup job to one of the concurrent

locks.
○ A common technique in LF algorithms: “helping”.
○ Still easier said than done :-)
○ And really cool.

Rethinking the TCP/IP stack

Common kernel network stack

Rethinking the TCP/IP stack

The common approach sucks on modern SMP:
● Cache bouncing as data moves through

layers
○ Interrupt processed on different CPU than read()
○ Linked lists

● Locking costs, even if not contended.
○ Lock on socket, file descriptor, etc.

● Data copying
○ Packets to socket buffer, kernel to user space, etc.

Van Jacobson Net Channels

Do as much processing as
possible on the CPU where
the application is running.

Van Jacobson Net Channels

Net Channel design:

Van Jacobson Net Channels

Virtio-app || Data plane

● For specialized applications, bypass the I/O
stack completely

● Application consumes data from virtio rings

User

Kernel

Integrating the JVM into the kernel

Core

JVM

Application
Server

Your AppDynamic
Heap
Memory

TCP in the
JVM + App
context Faster GC

Dynamic heap, sharing is good

JVM Memory System
memory

Lend
memory

Integrating the JVM into the kernel

Let’s Build A COMMUNITY

Porting a JVM application to OSV

1. Done*

* well, unless the application fork()s

Porting a C/C++ application to OSV

1. Must be a single-process application.
2. May not fork() or exec().
3. Need to rebuild as a shared object (.so).
4. Other API limitations apply.

Management

Resources

http://osv.io

https://github.com/cloudius-systems/osv

@CloudiusSystems

 osv-dev@googlegroups.com

http://osv.io
http://osv.io
https://github.com/cloudius-systems/osv
https://github.com/cloudius-systems/osv

OSv@Cloudius

Cloudius Systems, OS Comparison
Feature/Property

Good for:

Typical workload

kernel vs app

API, compatibility

Config files

Tuning

Upgrade/state

OSv

Machete:
Cloud/Virtualization
Single app * VMs

Cooperation

JVM, POSIX

0

Auto

Stateless, just boots

JVM support

Lines of code

License

Tailored GC/STW
solution

Few

BSD

Traditional OS
Swiss knife: anything

goes
Multiple apps/users,

utilities, anything

distrust

Any, but
versions/releases..

1000

Manual, requires
certifications

Complex, needs
snapshots, hope..

Yet another app

Gazillion

GPL / proprietary

